wetlands and water

ecosystems and human well-being

the life cycle of water and biodiversity European Parliament, Brussels. 9 February 2011

EP INTERGROUP ON CLIMATE CHANGE, BIODIVERSITY AND SUSTAINABLE DEVELOPMENT

protecting water-related ecosystems for sustainable development

glaciers - torrents - rivers - streams - lagoons - coastal marine areas rice-paddies - saltpans - fens - bogs - mires - lakes - swamps - marshes

wetland ecosystems ...

some conclusions of the MA*:

- >50% wetlands destroyed during the 20th century
- wetland degradation and loss more rapid than other ecosystems
- indirect drivers population growth and economic development
- coastal ecosystems most productive yet highly threatened
- climate changes to exacerbate wetland loss and degradation,
 decline of species, increase of vector-borne and waterborne diseases
- excessive nutrient loading a growing threat to rivers, lakes, marshes, coastal zones and coral reefs

*Millennium Ecosystem Assessment synthesis on wetlands and water

wetlands are functional parts of the hydrological cycle

starting with a catchment basin approach

... to understand the basic hydrological functions of the wetland ecosystems:

how to approach the understanding of wetland ecosystems?

special ecosystems ...

an ecosystems approach is essential:

> water flows make wetland ecosystems particularly important

> wetland ecosystems are
 functional structures of the
 hydrological cycle in each catchment

> the functioning is complicated through connections between surface and underground waters in coastal areas between fresh, brackish and salty waters

> rivers and connected wetlands act as **migratory corridors** for many species (fish, invertebrates, birds, plants, etc.)

AMSAR CONVENTION ON WETLANDS

counting ecosystems as water infrastructure

wetlands and climate

the main climate impact is on the **hydrological cycle**

wetlands provide **resilience** to harmful effects (through storm protection, freshwater storage)

wetland **rehabilitation** can mitigate CO₂ emissions from degraded wetlands

keep the carbon **stored** in wetlands where it is

peatlands are the most spaceeffective carbon stores of all ecosystems

restoring **forested** wetlands has carbon sequestration potential

caring about climate change - *means* caring about wetlands - *means* caring about biodiversity

climate change **mitigation** is all about **carbon** climate change **adaptation** is all about **water**

wetlands store, release, purify, provide freshwater store about a fourth of the terrestrial carbon

the **critical path**: *linking catchment basin planning with local site management*

the Wise Use concept

making use – in a sustainable way of ecosystem services for human well-being:

payments for ecosystem services

provisions (water, food, fiber, fuel, biochemicals, genetic resour.)
 regulations (climate, water, erosion, hazards, pollination)
 culture (spirit, inspiration, recreation, aesthetic, education)
 support (soil formation, nutrient cycling)

guidance to work on culture and wetlands

cultural aspects linked to site management (history, tradition, archeology, beliefs)

links between biological and cultural diversity

human activities at wetlands: habitation, resource uses, social & spiritual activities

overcome the « free-of-charge mentality » > public policy changes identify ecosystem dependencies and impacts > consumer choices reduce risks and deliver ecosystem services > business opportunities transfer of benefit estimations > better development decisions

The Economics of Ecosystems and Biodiversity:

... measuring to manage our natural capital

and biodiversity ?

the wetland provides a habitat:

for representative, rare or unique ecosystems within a biogeographic region for threatened plants and animal species for a **flagship/key species** for typical **diversity** of the **biogreographic region** for major gatherings of animals for at least 1% of **specific populations** for critical stages in species' life cycles (reproduction, refuge, migration, etc.)

engagements of the Ramsar Parties (all EU27+133 other countries):

1 Designation of Ramsar **Sites** of international importance

2 Wise use of all wetlands in their territory

3 International cooperation in shared basins and sites, for shared species and interests

Wetlands of International Importance «Ramsar Sites» inspire the Natura 2000 network

on site biodiversity risks assessment

mayor issues:

hydrology nutrients/pollutants vegetation change disturbance factors affecting key species

stakeholder involvement land-use planning communication, education, awarenss, participation Identification of the problem (e.g. site assessment: site-specific information on stressor and environment)

Identification of the effects (field assessment: e.g., bioassays, monitoring, surveys, etc.) Identification of the extent of exposure (e.g., chemical concentrations)

Identification of the risk (comparison of effects with the extent of exposure using a GIS framework)

> Risk management / Risk reduction (manage inputs / alter practices)

Monitoring (use of early warning and rapid assessment indicators / GISbased approach)

ecosystem products in terms of:

water (quality/quantity)

marketable products
(fish, fibre, food, drugs, etc.)
energy
biodiversity
(indirect uses, potential future
uses, non-marketable uses)

non-use existence and bequest values

practical challenges: how to divide the ecosystem benefits?

biodiversity policy priorities

extractive industries energy production (incl. biofuels) agriculture-water-ecosystems poverty eradication human health water management (quality, storage, desertification) mitigation and compensation for ecosystem loss wetland restoration

the first modern environmental treaty turns 40 – the age when life begins ... **and happy to work closer with the EU instances**